www.egwald.com Egwald Web Services

Egwald Web Services
Domain Names
Web Site Design

Egwald Website Search Twitter - Follow Elmer Wiens Radio Podcasts - Geraldos Hour

 

Statistics Programs - Econometrics and Probability Economics - Microeconomics & Macroeconomics Operations Research - Linear Programming and Game Theory Egwald's Mathematics Egwald's Optimal Control
Egwald HomeEconomics Home PageOligopoly/Public Firm ModelRun Oligopoly ModelDerive Oligopoly ModelProduction FunctionsCost FunctionsDuality Production Cost FunctionsGraduate EssaysReferences & Links
 

Egwald Economics: Microeconomics

Cost Functions

by

Elmer G. Wiens

Egwald's popular web pages are provided without cost to users.
Follow Elmer Wiens on Twitter: Twitter - Follow Elmer Wiens

Cost Functions:  Cobb-Douglas Cost | Normalized Quadratic Cost | Translog Cost | Diewert Cost | Generalized CES-Translog Cost | Generalized CES-Diewert Cost | References and Links

M. Generalized CES-Translog Cost Function

This web page replicates the procedures used to estimate the parameters of a Translog cost function to approximate a CES cost function. To determine the Translog's efficacy in estimating varying elasticities of substitution among pairs of inputs, on this web page we approximate a Generalized CES cost function with the Translog cost function.

Unlike the CES cost function, the Generalized CES cost function is not necessarily homothetic. Consequently, when we estimate the Translog cost function directly, we do not impose the homothetic conditions as we did when we approximated the CES cost function with the Translog cost function.

The three factor Translog (total) cost function is:

ln(C(q;wL,wK,wM)) = c + cq * ln(q) + cL * ln(wL) + cK * ln(wK) + cM * log(wM)              
                  + .5 * [dqq * ln(q)^2 + dLL * ln(wL)^2 + dKK * ln(wK)^2 + dMM * ln(wM)^2]
                  + .5 * [(dLK + dKL) * ln(wL)*ln(wK) + (dLM + dML) * ln(wL)*ln(wM) + (dKM + dMK) * ln(wK)*log(wM)]
                  + dLq * ln(wL)*ln(q) + dKq * ln(wK)*ln(q) + dMq * ln(wM)*ln(q)
        (**)

an equation linear in its 18 parameters, c, cq, cL, cK, cM, dqq, dLL, dKK, dMM, dLK, dKL, dLM, dML, dKM, dMK, dLq, dKq, and dMq.

We shall use two methods to obtain estimates of the parameters:

          À1: Estimate the parameters the cost function by way of its factor share functions — requires data relating output quantities to (cost minimizing) factor inputs, and input prices,

          À2: Estimate the parameters of the cost function directly — requires data relating output quantities to total (minimum) cost and input prices.

We shall use the three factor Generalized CES production function to generate the required cost data, yielding a data set relating output, q, and factor prices, wL, wK, and wM, [randomized about the base prices (wL*, wK*, wM*)]   to the Generalized CES cost minimizing factor inputs, L, K, and M. The base factor prices and the randomizing distribution are specified in the form below.

The three factor Generalized CES production function is:

q = A * [alpha * L^-rhoL + beta * K^-rhoK + gamma *M^-rhoM]^(-nu/rho) = f(L,K,M).

where L = labour, K = capital, M = materials and supplies, and q = product.

The parameter nu permits one to adjust the returns to scale, while the parameter rho is the geometric mean of rhoL, rhoK, and rhoM:

rho = (rhoL * rhoK * rhoM)^1/3.

If rho = rhoL = rhoK = rhoM, we get the standard CES production function. If also, rho = 0, ie sigma = 1/(1+rho) = 1, we get the Cobb-Douglas production function.

Generalized CES Elasticity of Scale of Production:

εLKM = ε(L,K,M) = (nu / rho) * (alpha * rhoL * L^-rhoL + beta * rhoK * K^-rhoK + gamma * rhoM * M^-rhoM) / (alpha * L^-rhoL + beta * K^-rhoK + gamma * M^-rhoM).

See the Generalized CES production function.



À1:   Estimate the factor share equations separately.

Taking the partial derivative of the cost function, C(q;wL,wK,wM), with respect to an input price, we get the (nonlinear) factor demand function for that input:

∂C/∂wL = L(q; wL, wK, wM),

∂C/∂wK = K(q; wL, wK, wM),

∂C/∂wM = M(q; wL, wK, wM)

The (total) cost of producing q units of output equals the sum of the factor demand functions weighted by their input prices:

C(q;wL,wK,wM)   =   wL * L(q; wL, wK, wM) + wK * K(q; wL, wK, wM) + wM * M(q; wL, wK, wM),

Write the factor share functions as:

sL(q;wL,wK,wM) = wL * L(q; wL, wK, wM) / C(q;wL,wK,wM) = wL * ∂C/∂wL / C(q;wL,wK,wM) = (∂ln(C)/∂wL )/ (∂ln(wL)/∂wL) = ∂ln(C)/∂ln(wL),

sK(q;wL,wK,wM)= wK * K(q; wL, wK, wM) / C(q;wL,wK,wM) = wK * ∂C/∂wK / C(q;wL,wK,wM) = (∂ln(C)/∂wK )/ (∂ln(wK)/∂wK) = ∂ln(C)/∂ln(wK),

sM(q;wL,wK,wM)= wM * M(q; wL, wK, wM) / C(q;wL,wK,wM) = wM * ∂C/∂wM / C(q;wL,wK,wM) = (∂ln(C)/∂wM )/ (∂ln(wL)/∂wM) = ∂ln(C)/∂ln(wM).

The Translog factor share functions are:

sL(q;wL,wK,wM) = cL + dLq * ln(q) + dLL * ln(wL) + dLK * ln(wK) + dLM * ln(wM),

sK(q;wL,wK,wM) = cK + dKq * ln(q) + dKL * ln(wL) + dKK * ln(wK) + dKM * ln(wM),

sM(q;wL,wK,wM) = cM + dMq * ln(q) + dML * ln(wL) + dMK * ln(wK) + dMM * ln(wM),

three linear equations in their 15 parameters.

Since it is likely that, as measured numerically, dLK != dKL, dLM != dML, and dKM != dMK, these distinctions are maintained in the factor share equations.

Having obtained the unrestricted estimates of the coefficients of the factor share functions, we shall compute the restricted least squares estimates with dLK = dKL, dLM = dML, and dKM = dMK.

I. Stage 1. Obtain the estimates of the fifteen parameters of the three factor share equations using linear multiple regression.

   Stage 2. Substitute the values of these parameters into the Translog cost function, and estimate its remaining three parameters, c, cq, and dqq, using linear multiple regression.

II. The estimated coefficients of the Translog cost function will vary with the parameters nu, rho, rhoL, rhoK, rhoM, alpha, beta and gamma of the Generalized CES production function.

Set the parameters below to re-run with your own Generalized CES parameters.

The restrictions ensure that the least-cost problems can be solved to obtain the underlying Generalized CES cost function, using the parameters as specified.
Intermediate (and other) values of the parameters also work.

Restrictions:
.8 < nu < 1.1;
-.6 < rhoL = rho < .6;
-.6 < rho < -.2 → rhoK = .95 * rho, rhoM = rho/.95;
-.2 <= rho < -.1 → rhoK = .9 * rho, rhoM = rho / .9;
-.1 <= rho < 0 → rhoK = .87 * rho, rhoM = rho / .87;
0 <= rho < .1 → rhoK = .7 * rho, rhoM = rho / .7;
.1 <= rho < .2 → rhoK = .67 * rho, rhoM = rho / .67;
.2 <= rho < .6 → rhoK = .6 * rho, rhoM = rho / .6;
rho = 0 → nu = alpha + beta + gamma (Cobb-Douglas)
4 <= wL* <= 11,   7<= wK* <= 16,   4 <= wM* <= 10

Generalized CES Production Function Parameters
nu:      
rho:      
Base Factor Prices
wL* wK* wM*
Distribution to Randomize Factor Prices
Use [-2, 2] Uniform distribution    
Use .25 * Normal (μ = 0, σ2 = 1)

The Generalized CES production function as specified:

q = 1 * [0.35 * L^- 0.17647 + 0.4 * K^- 0.11823 + 0.25 *M^- 0.26339]^(-1/0.17647) = f(L,K,M).

The factor prices are distributed about the base factor prices by adding a random number distributed uniformly in the [-2, 2] domain.

III. For these coefficients of the CES Generalized production function, I generated a sequence (displayed in the "Generalized CES-Translog Cost Function" table) of factor prices, outputs, and the corresponding cost minimizing inputs. Then I used these data to estimate the coefficients of each factor share equation separately:

QR Least Squares
Parameter Estimates
Parameter Coefficient std error t-ratio
cL0.3607780.001377.256
dLq4.5E-500.51
dLL0.0343450214.634
dLK-0.0137670-51.859
dLM-0.0203990-146.499
R2 = 0.9996 R2b = 0.9995 # obs = 31

QR Least Squares
Parameter Estimates
Parameter Coefficient std error t-ratio
cK0.2729720.001407.48
dKq0.0206810332.099
dKL-0.0137820-122.951
dKK0.0306230164.674
dKM-0.0170660-174.963
R2 = 0.9999 R2b = 0.9999 # obs = 31

QR Least Squares
Parameter Estimates
Parameter Coefficient std error t-ratio
cM0.366250.001495.542
dMq-0.0207260-301.671
dML-0.0205630-166.277
dMK-0.0168560-82.157
dMM0.0374660348.142
R2 = 0.9999 R2b = 0.9999 # obs = 31

The three estimated factor share functions are:

sL(q;wL,wK,wM) = 0.360778 + 4.5E-5 * ln(q) + 0.034345 * ln(wL) + -0.013767 * ln(wK) + -0.020399 * ln(wM),

sK(q;wL,wK,wM) = 0.272972 + 0.020681 * ln(q) + -0.013782 * ln(wL) + 0.030623 * ln(wK) + -0.017066 * ln(wM),

sM(q;wL,wK,wM) = 0.36625 + -0.020726 * ln(q) + -0.020563 * ln(wL) + -0.016856 * ln(wK) + 0.037466 * ln(wM)

As estimated, generally dLK != dKL, dLM != dML, and dKM != dMK: Young's Theorem doesn't hold without constraints across equations.

Note: C(q;wL,wK,wM) linear homogeneous in factor prices implies:

1   =?   cL + cK + cM   =   0.360778 + 0.272972 + 0.36625   =   1
0   =?   dLL + dLK + dLM   =   0.034345 + -0.013767 + -0.020399  =   0.000179
0   =?   dKL + dKK + dKM   =   -0.013782 + 0.030623 + -0.017066  =   -0.000225
0   =?   dML + dMK + dMM   =   -0.020563 + -0.016856 + 0.037466  =   4.7E-5
0   =?   dLq + dKq + dMq   =   4.5E-5 + 0.020681 + -0.020726  =   -0

IV. The Restricted Factor Share Equations.

Having obtained the unrestricted estimates of the coefficients of the factor share functions, we compute the restricted least squares estimates with dLK = dKL, dLM = dML, and dKM = dMK.

QR Restricted Least Squares
Parameter Estimates
Parameter Coefficient std error t-ratio
cL0.3609690.000472764.738991
dLq4.0E-56.4E-50.627604
dLL0.034350.000115297.728869
dLK-0.0137929.8E-5-140.230463
dLM-0.0204667.4E-5-276.229403
cK0.2728340.000658414.687343
dKq0.0206846.3E-5326.171973
dKL-0.0137929.8E-5-140.230463
dKK0.030650.00019161.742246
dKM-0.0170228.9E-5-191.195646
cM0.366520.000429853.91927
dMq-0.0207196.2E-5-332.487759
dML-0.0204667.4E-5-276.229403
dMK-0.0170228.9E-5-191.195646
dMM0.0374339.6E-5389.133464
R2 = 1 R2b = 1 # obs = 93

dLK = dKL, dLM = dML, and dKM = dMK

The three estimated, restricted factor share functions are:

sL(q;wL,wK,wM) = 0.360969 + 4.0E-5 * ln(q) + 0.03435 * ln(wL) + -0.013792 * ln(wK) + -0.020466 * ln(wM),

sK(q;wL,wK,wM) = 0.272834 + 0.020684 * ln(q) + -0.013792 * ln(wL) + 0.03065 * ln(wK) + -0.017022 * ln(wM),

sM(q;wL,wK,wM) = 0.36652 + -0.020719 * ln(q) + -0.020466 * ln(wL) + -0.017022 * ln(wK) + 0.037433 * ln(wM)

Imposing the dLK = dKL, dLM = dML, and dKM = dM restrictions may distort five necessary C(q;wL,wK,wM) linear homogeneous in factor prices restraints:

1   =?   cL + cK + cM   =   0.360969 + 0.272834 + 0.36652   =   1.000323
0   =?   dLL + dLK + dLM   =   0.03435 + -0.013792 + -0.020466  =   9.2E-5
0   =?   dKL + dKK + dKM   =   -0.013792 + 0.03065 + -0.017022  =   -0.000164
0   =?   dML + dMK + dMM   =   -0.020466 + -0.017022 + 0.037433  =   -5.5E-5
0   =?   dLq + dKq + dMq   =   4.0E-5 + 0.020684 + -0.020719  =   5.0E-6

Let us impose these additional five restraints and re-estimate the Restricted Factor Share Equations:

QR Restricted Least Squares
Parameter Estimates
Parameter Coefficient std error t-ratio
cL0.3611950.0001752059.508127
dLq2.9E-55.1E-50.571547
dLL0.0342958.7E-5395.169601
dLK-0.0138117.2E-5-191.017489
dLM-0.0204835.8E-5-353.712248
cK0.2724230.0001761543.50184
dKq0.0206895.1E-5408.532369
dKL-0.0138117.2E-5-191.017489
dKK0.0307828.6E-5358.862583
dKM-0.0169715.7E-5-295.271661
cM0.3663820.0001772075.191371
dMq-0.0207185.0E-5-412.87642
dML-0.0204835.8E-5-353.712248
dMK-0.0169715.7E-5-295.271661
dMM0.0374546.7E-5561.557456
R2 = 1 R2b = 1 # obs = 93

dLK = dKL, dLM = dML, dKM = dMK
1 = cL + cK + cM
0 = dLL + dLK + dLM
0 = dKL + dKK + dKM
0 = dML + dMK + dMM
0 = dLq + dKq + dMq

The three re-estimated, restricted factor share functions are:

sL(q;wL,wK,wM) = 0.361195 + 2.9E-5 * ln(q) + 0.034295 * ln(wL) + -0.013811 * ln(wK) + -0.020483 * ln(wM),

sK(q;wL,wK,wM) = 0.272423 + 0.020689 * ln(q) + -0.013811 * ln(wL) + 0.030782 * ln(wK) + -0.016971 * ln(wM),

sM(q;wL,wK,wM) = 0.366382 + -0.020718 * ln(q) + -0.020483 * ln(wL) + -0.016971 * ln(wK) + 0.037454 * ln(wM)

V.  To obtain estimates of the remaining three parameters, c, cq, and dqq, write:

ln(C(q;wL,wK,wM)) - {cL * ln(wL) + cK * ln(wK) + cM * log(wM) + .5 * [dLL * ln(wL)^2 + dKK * ln(wK)^2 + dMM * ln(wM)^2]
+ .5 * [(dLK + dKL) * ln(wL)*ln(wK) + (dLM + dML) * ln(wL)*ln(wM) + (dKM + dMK) * ln(wK)*log(wM)]
+ dLq * ln(wL)*ln(q) + dKq * ln(wK)*ln(q) + dMq * ln(wM)*ln(q)}
= R(q;wL,wK,wM) = c + cq * ln(q) + .5 * dqq * ln(q)^2

Estimate the linear equation:

R(q;wL,wK,wM) = c + cq * ln(q) + .5 * dqq * ln(q)^2

to obtain c, cq, and dqq.

QR Restricted Least Squares
Parameter Estimates
Parameter Coefficient std error t-ratio
c1.1154210.0001437791.813873
cq101000
dqq0.020932.3E-5891.215578
R2 = 1 R2b = 1 # obs = 31

1 = cq

VI. The Translog cost function as estimated is:

ln(C(q;wL,wK,wM)) = 1.115421 + 1 * ln(q) + 0.361195 * ln(wL) + 0.272423 * ln(wK) + 0.366382 * log(wM)
+ .5 * [0.02093 * ln(q)^2 + 0.034295 * ln(wL)^2 + 0.030782 * ln(wK)^2 + 0.037454 * ln(wM)^2]
+ .5 * [-0.027622 * ln(wL)*ln(wK) + -0.040967 * ln(wL)*ln(wM) + -0.033941 * ln(wK)*log(wM)]
+ 2.9E-5 * ln(wL)*ln(q) + 0.020689 * ln(wK)*ln(q) + -0.020718 * ln(wM)*ln(q)           (***)

VII. Check for linear homogeneity:

1   =?   cL + cK + cM   =   0.361195 + 0.272423 + 0.366382   =   1
0   =?   dLL + dLK + dLM   =   0.034295 + -0.013811 + -0.020483  =   0
0   =?   dKL + dKK + dKM   =   -0.013811 + 0.030782 + -0.016971  =   -0
0   =?   dML + dMK + dMM   =   -0.020483 + -0.016971 + 0.037454  =   -0
0   =?   dLq + dKq + dMq   =   2.9E-5 + 0.020689 + -0.020718  =   -0

C(q;wL,wK,wM) linear homogeneous in factor prices requires for any t > 0, that C(q;wL,wK,wM) obey:

C(q;t*wL,t*wK,t*wM) = t * C(q;wL,wK,wM)

      For example, with wL = 7, wK = 13, wM = 6, and t = 2:

2 * C(25; 7, 13, 6) = 1412.92 =? 1412.92 = C(25; 14, 26,12).

2 * C(30; 7, 13, 6) = 1722.07 =? 1722.07 = C(30; 14, 26,12).

VIII. Check for homotheticity:

Can we write C(q;wL,wK,wM) as the product of the unit cost function C(1;wL,wK,wM) and a suitable increasing function h(q) with h(0) = 0, and h(1) = 1:

C(q;wL,wK,wM) =? h(q) * C(1;wL,wK,wM)

To do so it is necessary that:

1   =?   cq   =   1,     0   =?   dqq  =   0.02093,

0   =?   dLq  =   2.9E-5,     0   =?   dKq  =   0.020689,     0   =?   dMq  =   -0.020718.

      For example, with wL = 7, wK = 13, wM = 6, and q = 30, try h(q) = q1/nu with nu = 1:

C(30; 7, 13, 6) = 861.04 =? 722.45 = 30 * 24.08 = 30^1/1 * C(1; 7, 13, 6).

Try it with rho = 0!

IX. 1. The matrix ∇2C of second order partial derivatives of the cost function C(q;wL,wK,wM) is symmetric. To show this, write:

ln(C(q;wL,wK,wM) = C(q;wL,wK,wM), so C(q;wL,wK,wM) = exp(C(q;wL,wK,wM)).

2C/∂q∂wL = dLq/(q*wL) = ∂2C/∂wL∂q,

2C/∂q∂wK = dKq/(q*wK) = ∂2C/∂wK∂q,

2C/∂q∂wM = dMq/(q*wM) = ∂2C/∂wM∂q,

2C/∂wL∂wK = .25 * (dLK+dKL)/(wL*wK) = ∂2C/∂wK∂wL,

2C/∂wL∂wM = .25 * (dLM+dML)/(wL*wM) = ∂2C/∂wM∂wL,

2C/∂wK∂wM = .25 * (dKM+dMK)/(wL*wK) = ∂2C/∂wM∂wK.

        Since the matrix ∇2C(q;wL,wK,wM) is symmetric, the matrix ∇2C(q;wL,wK,wM) is also symmetric.

  2. The cost function C(q;wL,wK,wM) is a concave in factor prices if its Hessian matrix ∇2wwC of second order partial derivatives with respect to factor prices is negative semidefinite.   Following the procedure suggested by Diewert and Wales (1987), write sL = sL(q;wL,wK,wM), sK = sK(q;wL,wK,wM), and sM = sM(q;wL,wK,wM), and the matrices:

D =
dLLdLKdLM
dKLdKKdKM
dMLdMKdMM
S =
sL 0 0
 0sK 0
 0 0sM
SS =
sL*sLsL*sKsL*sM
sK*sLsK*sKsK*sM
sM*sLsM*sKsM*sM
W =
wL 0 0
 0wK 0
 0 0wM

Assuming C(q;wL,wK,wM) > 0, then ∇2wwC is negative semidefinite if and only if the matrix:

H = W * ∇2wwC * W   =   D   -   S   +   SS

is negative semidefinite. See the Mathematical Notes.

  The values of the second order partial derivatives depend on the amount of output, and on factor prices. As an example, consider the case where q = 30, wL = 7, wK = 13, and wM = 6:

W * ∇2wwC * W =
-0.194940.11590.07904
0.1159-0.200850.08495
0.079040.08495-0.16399

The principal minors of H are H1 = -0.194941, H2 = 0.02572, and H3 = 0.

If these principal minors alternate in sign, starting with negative, with H3 <= 0, the matrix H is negative (semi)definite,
and the cost function C(q;wL,wK,wM) is a concave function in factor prices at q = 30, wL = 7, wK = 13, and wM = 6.

The eigenvalues of H are e1 = -0.3142, e2 = -0.2456, and e3 = 0.
H3 = e1 * e2 * e3 = 0.

X. The three estimated factor demand functions are obtained by:

L(q;wL,wK,wM) = sL(q;wL,wK,wM) * C(q;wL,wK,wM) / wL,

K(q;wL,wK,wM) = sK(q;wL,wK,wM) * C(q;wL,wK,wM) / wK,

M(q;wL,wK,wM) = sM(q;wL,wK,wM) * C(q;wL,wK,wM) / wM.

    The estimated factor demand elasticities are obtained by:

εL,wL = ∂ln(L(q;wL,wK,wM))/∂ln(wL) = -1 + sL(q;wL,wK,wM) + dLL / sL(q;wL,wK,wM),

εL,wK = ∂ln(L(q;wL,wK,wM))/∂ln(wK) = sK(q;wL,wK,wM) + dLK / sL(q;wL,wK,wM),

εL,wM = ∂ln(L(q;wL,wK,wM))/∂ln(wM) = sM(q;wL,wK,wM) + dLM / sL(q;wL,wK,wM),

εL,q = ∂ln(L(q;wL,wK,wM))/∂ln(q) = q * ∂ln(C)/∂q + dLq / sL(q;wL,wK,wM), etc.

      For example, with wL = 7, wK = 13, wM = 6, and q = 30:

εL,wLεL,wKεL,wMεL,q
εK,wLεK,wKεK,wMεK,q
εM,wLεM,wKεM,wMεM,q
-0.54770.32570.22211.0873
0.318-0.55110.23311.144
0.28270.3038-0.58641.0131

XI. Uzawa Partial Elasticities of Substitution:

uLK = C(q;wL,wK,wM) * ∂L(q;wL,wK,wM)/∂wK / (L(q;wL,wK,wM) * K(q;wL,wK,wM)),

uLM = C(q;wL,wK,wM) * ∂L(q;wL,wK,wM)/∂wM / (L(q;wL,wK,wM) * M(q;wL,wK,wM)),

uKL = C(q;wL,wK,wM) * ∂K(q;wL,wK,wM)/∂wL / (K(q;wL,wK,wM) * L(q;wL,wK,wM)),

uKM = C(q;wL,wK,wM) * ∂K(q;wL,wK,wM)/∂wM / (K(q;wL,wK,wM) * M(q;wL,wK,wM)),

uML = C(q;wL,wK,wM) * ∂M(q;wL,wK,wM)/∂wL / (M(q;wL,wK,wM) * L(q;wL,wK,wM)),

uMK = C(q;wL,wK,wM) * ∂M(q;wL,wK,wM)/∂wK / (M(q;wL,wK,wM) * K(q;wL,wK,wM)),

    where the partial derivatives of the factor demand functions are:

∂L(q;wL,wK,wM)/∂wK = (dLK * C / wK + sL * K) * C / (wL * L * K),

∂L(q;wL,wK,wM)/∂wM = (dLM * C / wM + sL * M) * C / (wL * L * M),

∂K(q;wL,wK,wM)/∂wL = (dKL * C / wL + sK * L) * C / (wK * K * L),

∂K(q;wL,wK,wM)/∂wM = (dKM * C / wM + sK * M) * C / (wK * K * M),

∂M(q;wL,wK,wM)/∂wL = (dML * C / wL + sM * L) * C / (wM * M * K),

∂M(q;wL,wK,wM)/∂wK = (dMK * C / wK + sM * K) * C / (wM * M * L)

With the dLK = dKL, dLM = dML, and dKM = dMK restrictions in the factor share functions, we get equality of the cross partial elasticities of substitution:

uLK = uKL,    uLM = uML,  and    uKM = uMK.

as seen in the following table.

XII. Table of Results: check that the estimated Translog cost function and input amounts for a given level of output agree with the Generalized CES production function's minimized cost and inputs. Also, compare the Allen partial elasticities of substitution, sLK, sLM, and sMK, with the Uzawa partial elasticities of substitution, uLK, uLM, and uKM.

Generalized CES-Translog Cost Function
À1: Estimate the Translog cost function using restricted factor shares
Parameters: nu = 1, rho = 0.17647, rhoL = 0.17647, rhoK = 0.11823, rhoM = 0.26339
   —   Generalized CES Cost Data   —    —   Translog Cost Data   —   Factor SharesUzawa ElasticitiesW * ∇2wwC * W
obs #qwLwKwM LK MsLKsLMsKMεLKMcostest costest Lest Kest MsLsKsMuLKuLMuKLuKMuMLuMKe1e2e3
1186.7 11.266.02 24.6614.43 22.650.90.790.830.93464.02464.1924.6914.4322.650.3560.350.2940.890.80.890.830.80.83 -0.307-0.2550
2196.82 14.985.78 28.0913.02 26.780.90.790.830.923541.42541.5728.0913.0326.780.3540.360.2860.890.80.890.840.80.84 -0.311-0.250
3208 14.265.46 26.4514.74 30.050.890.790.830.922585.82585.9226.4514.7430.070.3610.3590.280.890.80.890.830.80.83 -0.314-0.246-0
4217.88 12.55.44 26.9416.67 30.290.90.790.830.924585.4585.4626.9316.6730.310.3630.3560.2820.890.80.890.830.80.83 -0.313-0.2470
5228.06 11.187.82 29.3520.57 25.060.90.790.830.932662.54662.5729.3820.5625.050.3570.3470.2960.890.810.890.830.810.83 -0.306-0.2560
6236.6 14.064.76 33.0215.87 35.370.890.790.830.918609.39609.3833.0115.8735.380.3580.3660.2760.890.790.890.830.790.83 -0.316-0.2430
7247.98 13.26.54 32.7819.74 31.750.90.790.830.924729.89729.8532.7819.7431.750.3580.3570.2850.890.80.890.830.80.83 -0.311-0.2490
8256.72 13.586.36 37.7519.15 32.310.90.790.830.923719.27719.2137.7519.1532.310.3530.3620.2860.890.80.890.840.80.84 -0.311-0.2490
9268.86 13.927.72 35.6622.59 32.710.90.790.830.925882.87882.7735.6622.5832.710.3580.3560.2860.890.80.890.830.80.83 -0.311-0.250
10278.6 12.224.78 32.5822.47 42.930.890.790.830.918760759.8632.5622.4742.940.3680.3610.270.90.790.90.830.790.83 -0.319-0.240
11286.76 11.647.14 41.5724.45 32.40.90.790.830.926797.01796.8941.5724.4532.390.3530.3570.290.890.80.890.840.80.84 -0.309-0.252-0
12295.28 14.287.66 53.7921.42 32.040.90.790.830.923835.24835.1253.7721.4332.020.340.3660.2940.890.790.890.840.790.84 -0.308-0.2530
13307 136 43.7924.14 40.130.890.790.830.92861.17861.0443.7824.1440.130.3560.3640.280.890.790.890.830.790.83 -0.314-0.2460
14317.28 14.446.62 46.9824.51 40.880.890.790.830.919966.58966.4346.9724.5140.880.3540.3660.280.890.790.890.830.790.83 -0.314-0.246-0
15327.72 13.485 43.3325.23 49.60.890.790.830.915922.53922.3743.3125.2349.60.3620.3690.2690.90.790.90.830.790.83 -0.319-0.2380
16338.88 12.966.98 44.0730.15 43.230.890.790.830.9211083.81083.6444.0530.1443.240.3610.360.2790.890.80.890.830.80.83 -0.315-0.2450
17346.16 11.385.3 50.1427.97 45.380.890.790.830.918867.66867.5450.1227.9645.390.3560.3670.2770.890.790.890.830.790.83 -0.315-0.2440
18358.86 11.847.14 45.9234.06 44.040.890.790.830.9221124.491124.3545.934.0544.050.3620.3590.280.890.80.890.830.80.83 -0.314-0.2460
19366.1 14.944.48 56.6824.73 57.660.890.790.830.91973.43973.3156.6824.7257.650.3550.3790.2650.90.780.90.830.780.83 -0.322-0.2350
20377.46 12.545.18 50.8930.91 54.520.890.790.830.9151049.681049.5850.8730.9154.520.3620.3690.2690.90.790.90.830.790.83 -0.319-0.2390
21387.76 13.924.84 52.3430.04 60.930.890.790.830.9121119.271119.1952.3430.0460.910.3630.3740.2630.90.790.90.830.790.83 -0.322-0.2350
22395.5 11.065.9 62.8632.89 47.040.890.790.830.919986.97986.9562.8432.8947.050.350.3690.2810.890.790.890.840.790.84 -0.314-0.246-0
23408.1 12.966.96 57.0836.45 51.260.890.790.830.9181291.491291.4857.0736.4551.270.3580.3660.2760.890.790.890.830.790.83 -0.316-0.2430
24415.18 11.785.24 68.2632.13 53.210.890.790.830.9151010.921010.9368.2532.1353.230.350.3740.2760.890.790.890.840.790.84 -0.316-0.2420
25425.88 11.287.08 68.8537.75 46.730.890.790.830.921161.461161.5268.8437.7646.730.3490.3670.2850.890.790.890.840.790.84 -0.312-0.2480
26435.56 12.165.92 71.7735.08 53.540.890.790.830.9151142.561142.6571.7735.0753.570.3490.3730.2780.890.790.890.840.790.84 -0.316-0.243-0
27446.06 13.727.88 77.8337.03 49.290.890.790.830.9181368.121368.377.8237.0449.310.3450.3710.2840.890.790.890.840.790.84 -0.313-0.2470
28455.94 14.824.02 71.6831.14 76.560.890.790.830.9051195.031195.1671.7731.1276.520.3570.3860.2570.90.780.90.830.780.83 -0.325-0.230
29468.54 12.844.7 59.2940.11 75.570.890.790.830.911376.61376.8659.3240.1475.510.3680.3740.2580.90.780.90.820.780.82 -0.325-0.2310
30476.82 14.264.94 71.7836.52 72.640.890.790.830.9081369.21369.4771.8336.5272.640.3580.380.2620.90.780.90.830.780.83 -0.323-0.2330
31486.88 11.087.24 72.9446.91 54.860.890.790.830.9191418.741419.172.9546.9254.880.3540.3660.280.890.790.890.830.790.83 -0.314-0.2460
AVE:337.09 12.956.03 4927.19 44.880.890.790.830.919950.41950.414927.1944.880.3560.3660.2780.890.790.890.830.790.83-0.315-0.2440




À2:   Estimating the Translog cost function directly.

XIII. If we have a data set relating the input (factor) prices, wL, wK, and wM, to the total (minimum) cost of producing output for varying levels output, but we do not have data on the required levels of inputs, we can estimate the Translog cost function directly. We will use the same sequence (displayed in the "Generalized CES-Translog Cost Function" table) of factor prices, outputs, and total (minimum) cost as used in À1. The estimated coefficients of the cost function will vary with the parameters nu, rho, rhoL, rhoK, rhoM, alpha, beta and gamma of the Generalized CES production function used to generate these data. We impose 5 restrictions on the estimates of the parameters as specified:

SVD Restricted Least Squares
Parameter Estimates
Parameter Coefficient std error t-ratio
c1.0926110.0003333276.936868
cq1.0135140.0001915312.334766
cL0.3616870.0002151682.205769
cK0.2720840.0001581717.157702
cM0.3662290.0001432567.289384
dqq0.0169595.5E-5306.521265
dLL0.0343840.000129266.826302
dKK0.0309490.000133232.867959
dMM0.0374850.000119314.604428
2*dLK-0.0278480.000294-94.570877
2*dLM-0.0409190.000138-296.232723
2*dKM-0.034050.000165-206.873158
dLq-0.0001670.000104-1.606658
dKq0.0415199.2E-5449.711482
dMq-0.0413527.4E-5-559.846927
R2 = 1 R2b = 1 # obs = 31
Observation Matrix Rank: 15

1 = cL + cK + cM
0 = dLL + dLK + dLM
0 = dKL + dKK + dKM
0 = dML + dMK + dMM
0 = dLq + dKq + dMq

XIV. The Translog cost function estimated directly is:

ln(C(q;wL,wK,wM)) = 1.092611 + 1.013514 * ln(q) + 0.361687 * ln(wL) + 0.272084 * ln(wK) + 0.366229 * log(wM)
+ .5 * [0.016959 * ln(q)^2 + 0.034384 * ln(wL)^2 + 0.030949 * ln(wK)^2 + 0.037485 * ln(wM)^2]
+ .5 * [-0.027848 * ln(wL)*ln(wK) + -0.040919 * ln(wL)*ln(wM) + -0.03405 * ln(wK)*log(wM)]
+ -0.000167 * ln(wL)*ln(q) + 0.041519 * ln(wK)*ln(q) + -0.041352 * ln(wM)*ln(q)           (***)

XV. Its three derived factor share functions are:

sL(q;wL,wK,wM) = 0.361687 + -0.000167 * ln(q) + 0.034384 * ln(wL) + -0.013924 * ln(wK) + -0.02046 * ln(wM),

sK(q;wL,wK,wM) = 0.272084 + 0.041519 * ln(q) + -0.013924 * ln(wL) + 0.030949 * ln(wK) + -0.017025 * ln(wM),

sM(q;wL,wK,wM) = 0.366229 + -0.041352 * ln(q) + -204.6 * ln(wL) + -0.017025 * ln(wK) + 0.037485 * ln(wM)

XVI. Notes:
      1. As derived, dLK = dKL, dLM = dML, and dKM = dMK: Young's Theorem holds by construction.

      2. C(q;wL,wK,wM) linear homogeneous in factor prices implies:

1   =?   cL + cK + cM   =   0.361687 + 0.272084 + 0.366229   =   1
0   =?   dLL + dLK + dLM   =   0.034384 + -0.013924 + -0.02046  =   0
0   =?   dKL + dKK + dKM   =   -0.013924 + 0.030949 + -0.017025  =   0
0   =?   dML + dMK + dMM   =   -0.02046 + -0.017025 + 0.037485  =   0
0   =?   dLq + dKq + dMq   =   -0.000167 + 0.041519 + -0.041352  =   0

      3. The matrix ∇2C of second order partial derivatives of the cost function C(q;wL,wK,wM) is symmetric.

     4. The cost function C(q;wL,wK,wM) is a concave in factor prices if its Hessian matrix ∇2wwC of second order partial derivatives with respect to factor prices is negative semidefinite.   Following the procedure suggested by Diewert and Wales (1987), write sL = sL(q;wL,wK,wM), sK = sK(q;wL,wK,wM), and sM = sM(q;wL,wK,wM), and the matrices:

D =
dLLdLKdLM
dKLdKKdKM
dMLdMKdMM
S =
sL 0 0
 0sK 0
 0 0sM
SS =
sL*sLsL*sKsL*sM
sK*sLsK*sKsK*sM
sM*sLsM*sKsM*sM
W =
wL 0 0
 0wK 0
 0 0wM

Assuming C(q;wL,wK,wM) > 0, then ∇2wwC is negative semidefinite if and only if the matrix:

H = W * ∇2wwC * W   =   D   -   S   +   SS

is negative semidefinite. See the Mathematical Notes.

  The values of the second order partial derivatives depend on the amount of output, and on factor prices. As an example, consider the case where q = 30, wL = 7, wK = 13, and wM = 6:

W * ∇2wwC * W =
-0.194780.140810.05397
0.14081-0.214840.07402
0.053970.07402-0.12799

The principal minors of H are H1 = -0.194781, H2 = 0.022017, and H3 = 0.

If these principal minors alternate in sign, starting with negative, with H3 <= 0, the matrix H is negative (semi)definite,
and the cost function C(q;wL,wK,wM) is a concave function in factor prices at q = 30, wL = 7, wK = 13, and wM = 6.

The eigenvalues of H are e1 = -0.3476, e2 = -0.19, and e3 = 0.
H3 = e1 * e2 * e3 = 0.

XVII. Check for linear homogeneity:

C(q;wL,wK,wM) linear homogeneous in factor prices requires for any t > 0, that C(q;wL,wK,wM) obey:

C(q;t*wL,t*wK,t*wM) = t * C(q;wL,wK,wM)

      For example, with wL = 7, wK = 13, wM = 6, and t = 2:

2 * C(25; 7, 13, 6) = 1487.91 =? 1487.91 = C(25; 14, 26,12).

2 * C(30; 7, 13, 6) = 1818.92 =? 1818.92 = C(30; 14, 26,12).

XVIII. Check for homotheticity:

Can we write C(q;wL,wK,wM) as the product of the unit cost function C(1;wL,wK,wM) and a suitable increasing function h(q) with h(0) = 0, and h(1) = 1:

C(q;wL,wK,wM) =? h(q) * C(1;wL,wK,wM)

To do so it is necessary that:

1   =?   cq   =   1.013514,     0   =?   dqq  =   0.016959,

0   =?   dLq  =   -0.000167,     0   =?   dKq  =   0.041519,     0   =?   dMq  =   -0.041352.

      As examples:

          a. with wL = 7, wK = 13, wM = 6, and q = 25, try h(q) = q1/nu with nu = 1:

C(25; 7, 13, 6) = 743.96 =? 588.38 = 25 * 23.54 = 25^1/1 * C(1; 7, 13, 6).

          b. with wL = 7, wK = 13, wM = 6, and q = 30, try h(q) = q1/nu with nu = 1:

C(30; 7, 13, 6) = 909.46 =? 706.06 = 30 * 23.54 = 30^1/1 * C(1; 7, 13, 6).

Try it with rho = 0!

XIX. The three derived factor demand functions are obtained by:

L(q;wL,wK,wM) = sL(q;wL,wK,wM) * C(q;wL,wK,wM) / wL,

K(q;wL,wK,wM) = sK(q;wL,wK,wM) * C(q;wL,wK,wM) / wK,

M(q;wL,wK,wM) = sM(q;wL,wK,wM) * C(q;wL,wK,wM) / wM.

    The factor demand elasticities are obtained by:

εL,wL = ∂ln(L(q;wL,wK,wM))/∂ln(wL) = -1 + sL(q;wL,wK,wM) + dLL / sL(q;wL,wK,wM),

εL,wK = ∂ln(L(q;wL,wK,wM))/∂ln(wK) = sK(q;wL,wK,wM) + dLK / sL(q;wL,wK,wM),

εL,wM = ∂ln(L(q;wL,wK,wM))/∂ln(wM) = sM(q;wL,wK,wM) + dLM / sL(q;wL,wK,wM),

εL,q = ∂ln(L(q;wL,wK,wM))/∂ln(q) = q * ∂ln(C)/∂q + dLq / sL(q;wL,wK,wM), etc.

      For example, with wL = 7, wK = 13, wM = 6, and q = 30:

εL,wLεL,wKεL,wMεL,q
εK,wLεK,wKεK,wMεK,q
εM,wLεM,wKεM,wMεM,q
-0.54770.39590.15171.1028
0.3237-0.49380.17011.1987
0.25790.3537-0.61160.9057

XX. Table of Results: check that the estimated Translog cost function and input amounts for a given level of output agree with the Generalized CES production function's minimized cost and inputs. Also, compare the Allen partial elasticities of substitution, sLK, sLM, and sMK, with the Uzawa partial elasticities of substitution, uLK, uLM, and uKM. Comparing the estimated cost and input amounts obtained from the Translog cost function with the Generalized CES data, one can conclude that method À1 obtains more accurate results than method À2 for rho > 0.

Generalized CES-Translog Cost Function
À2: Estimate the Translog cost function directly
Parameters: nu = 1, rho = 0.17647, rhoL = 0.17647, rhoK = 0.11823, rhoM = 0.26339
   —   Generalized CES Cost Data   —    —   Translog Cost Data   —   Factor SharesUzawa ElasticitiesW * ∇2wwC * W
obs #qwLwKwM LK MsLKsLMsKMεLKMcostest costest Lest Kest MsLsKsMuLKuLMuKLuKMuMLuMKe1e2e3
1186.7 11.266.02 24.6614.43 22.650.90.790.830.93464.02481.7725.6117.5418.720.3560.410.2340.90.750.90.820.750.82 -0.337-0.2110
2196.82 14.985.78 28.0913.02 26.780.90.790.830.923541.42573.8529.7516.1522.330.3540.4220.2250.910.740.910.820.740.82 -0.341-0.2030
3208 14.265.46 26.4514.74 30.050.890.790.830.922585.82621.828.0618.3524.850.3610.4210.2180.910.740.910.810.740.81 -0.344-0.198-0
4217.88 12.55.44 26.9416.67 30.290.90.790.830.924585.4616.9528.3720.6824.790.3620.4190.2190.910.740.910.810.740.81 -0.344-0.199-0
5228.06 11.187.82 29.3520.57 25.060.90.790.830.932662.54677.9130.0524.9320.090.3570.4110.2320.910.750.910.820.750.82 -0.338-0.2090
6236.6 14.064.76 33.0215.87 35.370.890.790.830.918609.39653.8535.420.0529.040.3570.4310.2110.910.730.910.810.730.81 -0.347-0.1920
7247.98 13.26.54 32.7819.74 31.750.90.790.830.924729.89764.4634.3224.525.570.3580.4230.2190.910.740.910.820.740.82 -0.344-0.199-0
8256.72 13.586.36 37.7519.15 32.310.90.790.830.923719.27756.6539.6923.8726.060.3520.4280.2190.910.740.910.820.740.82 -0.343-0.198-0
9268.86 13.927.72 35.6622.59 32.710.90.790.830.925882.87918.7637.0927.9626.020.3580.4240.2190.910.740.910.820.740.82 -0.344-0.198-0
10278.6 12.224.78 32.5822.47 42.930.890.790.830.918760810.2634.728.534.230.3680.430.2020.910.720.910.80.720.8 -0.352-0.1840
11286.76 11.647.14 41.5724.45 32.40.90.790.830.926797.01824.4242.9830.1925.540.3520.4260.2210.910.740.910.820.740.82 -0.342-0.2-0
12295.28 14.287.66 53.7921.42 32.040.90.790.830.923835.24872.556.1326.6625.510.340.4360.2240.910.730.910.830.730.83 -0.34-0.2010
13307 136 43.7924.14 40.130.890.790.830.92861.17909.4646.2130.4431.720.3560.4350.2090.910.730.910.810.730.81 -0.348-0.190
14317.28 14.446.62 46.9824.51 40.880.890.790.830.919966.581021.8249.6230.9632.260.3540.4370.2090.910.720.910.810.720.81 -0.348-0.190
15327.72 13.485 43.3325.23 49.60.890.790.830.915922.53990.6446.4832.3839.060.3620.4410.1970.910.710.910.80.710.8 -0.353-0.180
16338.88 12.966.98 44.0730.15 43.230.890.790.830.9211083.81133.5146.0537.8833.480.3610.4330.2060.910.720.910.810.720.81 -0.349-0.1880
17346.16 11.385.3 50.1427.97 45.380.890.790.830.918867.66917.5452.9735.4835.370.3560.440.2040.910.720.910.810.720.81 -0.35-0.1860
18358.86 11.847.14 45.9234.06 44.040.890.790.830.9221124.491167.1947.6242.6233.70.3610.4320.2060.910.730.910.810.730.81 -0.349-0.1880
19366.1 14.944.48 56.6824.73 57.660.890.790.830.91973.431064.5861.9432.3445.440.3550.4540.1910.910.70.910.80.70.8 -0.355-0.1740
20377.46 12.545.18 50.8930.91 54.520.890.790.830.9151049.681121.4754.3239.7342.090.3610.4440.1940.910.710.910.80.710.8 -0.354-0.1770
21387.76 13.924.84 52.3430.04 60.930.890.790.830.9121119.271212.0556.6439.1247.120.3630.4490.1880.910.70.910.80.70.8 -0.357-0.1710
22395.5 11.065.9 62.8632.89 47.040.890.790.830.919986.971035.3165.8741.6236.060.350.4450.2050.910.720.910.810.720.81 -0.349-0.1860
23408.1 12.966.96 57.0836.45 51.260.890.790.830.9181291.491354.459.846.2338.920.3580.4420.20.910.710.910.810.710.81 -0.352-0.1820
24415.18 11.785.24 68.2632.13 53.210.890.790.830.9151010.921076.0772.5841.2440.890.3490.4510.1990.910.710.910.810.710.81 -0.351-0.180
25425.88 11.287.08 68.8537.75 46.730.890.790.830.921161.461204.2771.3147.4335.30.3480.4440.2080.910.720.910.820.720.82 -0.348-0.1880
26435.56 12.165.92 71.7735.08 53.540.890.790.830.9151142.561208.6475.8444.8740.780.3490.4510.20.910.710.910.810.710.81 -0.351-0.1810
27446.06 13.727.88 77.8337.03 49.290.890.790.830.9181368.121429.1781.246.8837.30.3440.450.2060.910.710.910.820.710.82 -0.348-0.1860
28455.94 14.824.02 71.6831.14 76.560.890.790.830.9051195.031324.6479.4641.5758.860.3560.4650.1790.920.680.920.80.680.8 -0.36-0.1620
29468.54 12.844.7 59.2940.11 75.570.890.790.830.911376.61490.8164.1752.6956.640.3680.4540.1790.920.690.920.790.690.79 -0.362-0.1620
30476.82 14.264.94 71.7836.52 72.640.890.790.830.9081369.21490.178.0848.0955.010.3570.460.1820.920.690.920.80.690.8 -0.359-0.1660
31486.88 11.087.24 72.9446.91 54.860.890.790.830.9191418.741468.1175.459.1940.540.3530.4470.20.910.710.910.810.710.81 -0.351-0.1820
AVE:337.09 12.956.03 51.8634.52 34.950.890.790.830.919950.411006.2251.8634.5234.950.3560.4370.2070.910.720.910.810.720.81-0.349-0.1870




Mathematical Notes

1. The Translog Cost Function:

ln(C(q;wL,wK,wM)) = c + cq * ln(q) + cL * ln(wL) + cK * ln(wK) + cM * log(wM)              
                  + .5 * [dqq * ln(q)^2 + dLL * ln(wL)^2 + dKK * ln(wK)^2 + dMM * ln(wM)^2]
                  + .5 * [(dLK + dKL) * ln(wL)*ln(wK) + (dLM + dML) * ln(wL)*ln(wM) + (dKM + dMK) * ln(wK)*log(wM)]
                  + dLq * ln(wL)*ln(q) + dKq * ln(wK)*ln(q) + dMq * ln(wM)*ln(q)
        (**)

2. The Factor Share Functions:

∂ln(C)/∂ln(wL) = (∂ln(C)/∂wL )/ (∂ln(wL)/∂wL) = (1 / C(q;wL,wK,wM)) * ∂ln(C)/∂wL * wL = wL * L(q; wL, wK, wM) / C(q;wL,wK,wM) = sL(q;wL,wK,wM),

∂ln(C)/∂ln(wK) = (∂ln(C)/∂wK )/ (∂ln(wK)/∂wK) = (1 / C(q;wL,wK,wM)) * ∂ln(C)/∂wK * wK = wK * K(q; wL, wK, wM) / C(q;wL,wK,wM) = sK(q;wL,wK,wM),

∂ln(C)/∂ln(wM) = (∂ln(C)/∂wM )/ (∂ln(wM)/∂wM) = (1 / C(q;wL,wK,wM)) * ∂ln(C)/∂wM * wM = wM * M(q; wL, wK, wM) / C(q;wL,wK,wM) = sM(q;wL,wK,wM).

 

sL(q;wL,wK,wM) = cL + dLq * ln(q) + dLL * ln(wL) + dLK * ln(wK) + dLM * ln(wM),

sK(q;wL,wK,wM) = cK + dKq * ln(q) + dKL * ln(wL) + dKK * ln(wK) + dKM * ln(wM),

sM(q;wL,wK,wM) = cM + dMq * ln(q) + dML * ln(wL) + dMK * ln(wK) + dMM * ln(wM),

3. The Factor Demand Functions:

L(q;wL,wK,wM) = sL(q;wL,wK,wM) * C(q;wL,wK,wM) / wL,

K(q;wL,wK,wM) = sK(q;wL,wK,wM) * C(q;wL,wK,wM) / wK,

M(q;wL,wK,wM) = sM(q;wL,wK,wM) * C(q;wL,wK,wM) / wM.

4. The Factor Demand Elasticities:

C = wL * L / sL = wK * K / sK = wM * M / sM,   → sL = (wL * L) * sK / (wK * K) = wL * L / C,    

∂L/∂wL = [(∂sL/∂wL * C + sL * ∂C/∂wL) * wL - (sL * C)(1)] / wL^2 = [(dLL/wL * wL*L/sL + sL * L) * wL - (sL * wL * L/sL)] / wL^2 = (L /wL) * (dLL/sL + sL - 1), so
εL,L = ∂ln(L)/∂ln(wL) = ∂ln(L)/∂wL * ∂wL/∂ln(wL) = ∂L/∂wL * wL/L = (- 1 + sL + dLL/sL).

∂L/∂wK = [(∂sL/∂wK * C + sL * ∂C/∂wK] / wL = [dLK/wK * (wL *L / sL) + ((wL * L) * sK / (wK * K))*K] / wL = [dLK*L/(wK*sL) + L*sK/wK], so
εL,K = ∂ln(L)/∂ln(wK) = ∂ln(L)/∂wK * ∂wK/∂ln(wK) = ∂L/∂wK * wK/L = (sK + dLK/sL).

∂L/∂q = [(∂sL/∂q * C + sL * ∂C/∂q] / wL = [(dLq/q)*(wL*L/sL) + (wL*L/C)*C*(∂ln(C)/∂q)]/wL, so
εL,q = ∂ln(L)/∂ln(q) = ∂ln(L)/∂q * ∂q/∂ln(q) = (∂L/∂q)*(q/L) = q * ∂ln(C)/∂q + dLq / sL,

5. Cost Function C(q;wL,wK,wM) Concave in Factor Prices:

∂ln(C)/∂ln(wL) = sL = wL * L / C = wL * ∂C/∂wL / C → ∂C/∂wL = sL * C / wL,

2ln(C)/∂ln(wL)∂ln(wL) = [(∂wL/∂ln(wL) * ∂C/∂wL + wL * ∂2C/∂wL∂ln(wL)) * C - wL * ∂C/∂wL * ∂C/∂ln(wL)] / C2
          = [(wL * ∂C/∂wL + wL * ∂2C/∂wL∂wL * wL) * C - wL * ∂C/∂wL * ∂C/∂wL * wL] / C2
          = wL * ∂C/∂wL / C - wL * ∂C/∂wL * wL * ∂C/∂wL / C2 + wL * wL * ∂2C/∂wL∂wL / C
          = sL - sL * sL + wL * wL * ∂2C/∂wL∂wL / C = dLL, so

wL * wL * ∂2C/∂wL∂wL / C = dLL - sL + sL * sL

2ln(C)/∂ln(wL)∂ln(wK) = [(∂wL/∂ln(wK) * L + wL * ∂L/∂ln(wK)) * C - wL * L * ∂C/∂ln(wK)] / C2
          = [(0 + wL * ∂2C/∂wL∂wK * wK) * C - wL * L * ∂C/∂wK * wK] / C2
          = - wL * L * wK * K / C2 + wL * wK * ∂2C/∂wL∂wK / C
          = - sL * sK + wL * wK * ∂2C/∂wL∂wK / C = dLK, so

wL * wK * ∂2C/∂wL∂wK / C = dLK + sL * sK

 

 
   

      Copyright © Elmer G. Wiens:   Egwald Web Services       All Rights Reserved.    Inquiries