www.egwald.com Egwald Web Services

Egwald Web Services
Domain Names
Web Site Design

Egwald Website Search JOIN US AS A FACEBOOK FAN Twitter - Follow Elmer WiensRadio Podcasts - Geraldos Hour

 

Statistics Programs - Econometrics and Probability Economics - Microeconomics & Macroeconomics Operations Research - Linear Programming and Game Theory Egwald's Mathematics Egwald's Optimal Control
Egwald Home Statistics Home Page Multiple Regression Probability and Stochastic Processes References and Links
 

Egwald Statistics: Econometrics, Probability,
and Stochastic Processes

by

Elmer G. Wiens

Egwald's popular web pages are provided without cost to users.
Please show your support by joining Egwald Web Services as a Facebook Fan: JOIN US AS A FACEBOOK FAN
Follow Elmer Wiens on Twitter: Twitter - Follow Elmer Wiens

A. Multiple regression analysis package.

Run regressions online. Easy to learn. Easy to use.

  a. Linear multiple regression.

      1. Example: Predicting Canadian Elections using the equation:

            C = ß0 + ß1 * E + ß2 * OQ + ß3 * P + ß4 * BC
                where
            C = Percent of seats of Canada taken by the winning party
            E = Percent of seats of Eastern Canada taken by the winning party
            OQ = Percent of seats of Ontario and Quebec taken by the winning party
            P = Percent of seats of Prairie Provinces taken by the winning party
            BC = Percent of seats of B.C. taken by the winning party

      Regression equation using the data for 1949-2004: Predicting Canadian Elections. These 18 elections yield the equation:

            C = -17.321 + 0.13 * E + 0.857 * OQ + 0.117 * P + 0.113 * BC

              (Each regression coefficient is statistically significant)

      2. Do your own regression study.

  b. Restricted linear regression.

      1. Example: Cobb Douglas Production Function

      2. Do your own restricted regression study

Check out the derivation of the regression model.

Statistics, multiple regression, and numerical analysis references.

B. Probability and Stochastic Processes.

Learn key concepts used in statistics and regression analysis.

  a. Probability

      1. Graphs of the normal and gamma probability distributions.

      2. Graphs of the chi-square, Student-t, and F probability distributions.

      3. Graphs of the sample mean and variance distributions.

      4. Hypotheses testing of means and variances.

  b. Stochastic Processes

      1. Random Walk.

C. Background and References.

      1. Linear Algebra background to least squares (multiple regression).

      2. Statistics and probability theory references.

Links

The Math Help Forum. https://mathhelpforum.com/community.

Study econometrics in the Department of Economics of the KU Leuven, Belgium.

 
   

      Copyright © Elmer G. Wiens:   Egwald Web Services       All Rights Reserved.    Inquiries